www.a2zpapers.com

Exam. Code : 103204
Subject Code : 1126

B.A./B.Sc. $4^{\text {th }}$ Semester MATHEMATICS
 Paper-II
 (Number Theory)

Time Allow d-3 Hours] [Maximum Marks-50
Note :-Attem ${ }_{\digamma^{\dagger}}{ }^{\text {a }}$ any GIVE questions, selecting at least TWO que sticns from each section. All questions carry equal marks.

SECTM (ONI-A

1. (a) Prove that if a and $\mathrm{b}:$: integers, with $\mathrm{b}>0$, then there exist unique in \ddagger :geis q and r satisfying $\mathrm{a}=\mathrm{qb}+\mathrm{r}$, where $2 \mathrm{~b} \leq \mathrm{r}<$? 3 .
(b) By Division Algorithm of $\mathrm{n} \geq 1$, prove that $\mathrm{n}(\mathrm{n}+1)(\mathrm{n}+2) / 6$ is an integer.
2. (a) Prove that if a and b are given integers, not both zero, then the set
$T=\{a x+b y \mid x, y$ are integers $\}$ is precisely the set of all multiples of $d=\operatorname{gcd}(a, b)$.
(b) Prove that if a and b are both odd integers, then $16 / a^{4}+b^{4}-2$.

www.a2zpapers.com

3. (a) Prove that if d is a common divisor of a and b, then $d=\operatorname{gcd}(a, b)$ if and only if $\operatorname{gcd}\left(\frac{a}{d}, \frac{b}{d}\right)=1$.
(b) Determine all solutions in the positive integers of Diophantine equation $18 x+5 y=48$.
4. (a) Fir e that only prime of the form $\mathrm{n}^{3}-1$ is 7 .
(b) If ρ is the nth prime number, prove that $p_{n} \leq 2^{2^{n-1}}$.
5. (a) Prove that ar: nteger is divisible by 4 if and only if the number formed by its ten units digits is divisible by 4 .
(b) Use the theory of rengruencies to verify $89 / 2^{44}-1$.

SECTION-b

6. State and prove Chinese remainder lienrem and solve the following set of simultaneous cungruencies $x \equiv 1(\bmod 3), x \equiv 2(\bmod 5), x \equiv 3(\bmod \gamma)$.
7. (a) Employ Fermat's Theorem to prove that, is ρ is a odd prime, then

$$
1^{p-1}+2^{p-1}+3^{p-1}+\ldots \ldots(p-1)^{p-1} \equiv-1(\bmod p) .
$$

(b) Using Wilson's Theorem, prove that

$$
1^{2} \cdot 3^{2} \cdot 5^{2} \cdots \cdots(p-2)^{2} \equiv(-1)^{(p+1) / 2}(\bmod p)
$$

2666(2416)/QFV-49298 2
(Contd.)
www.a2zpapers.com
8. (a) Prove that the functions π and σ are both multiplicative functions.
(b) Prove that for each positive integer $\mathrm{n} \geq 1$, $\sum_{d / n} \mu(\mathrm{~d})=\left\{\begin{array}{lll}1 & \text { if } & \mathrm{n}=1 \\ 0 & \text { if } & \mathrm{n}>1\end{array}\right.$ where d runs through the positive divisors of n.
9. (a) Shrew that 1000 ! terminates in 249 zeros.
(b) State and prove Euler's Theorem.
10. (a) Prove that fur $\mathrm{n}>1$, the sum of the positive integers les; than n and relatively prime to n is $\frac{1}{2} n \varphi(n)$.
(b) Show that for any intere: $\mathrm{n} \geq 3, \sum_{\mathrm{k}=1}^{\mathrm{n}} 1 \mathrm{l}(\mathrm{k}!)=1$.

